Accelerated life tests for prognostic and health management of MEMS devices
نویسندگان
چکیده
Microelectromechanical systems (MEMS) offer numerous applications thanks to their miniaturization, low power consumption and tight integration with control and sense electronics. They are used in automotive, biomedical, aerospace and communication technologies to achieve different functions in sensing, actuating and controlling. However, these microsystems are subject to degradations and failure mechanisms which occur during their operation and impact their performances and consequently the performances of the systems in which they are used. These failures are due to different influence factors such as temperature, humidity, etc. The reliability of MEMS is then considered as a major obstacle for their development. In this context, it is necessary to continuously monitor them to assess their health status, detect abrupt faults, diagnose the causes of the faults, anticipate incipient degradations which may lead to complete failures and take appropriate decisions to avoid abnormal situations or negative outcomes. These tasks can be performed within Prognostics and Health Management (PHM) framework. This paper presents a hybrid PHM method based on physical and data-driven models and applied to a microgripper. The MEMS is first modeled in a form of differential equations. In parallel, accelerated life tests are performed to derive its degradation model from the acquired data. The nominal behavior and the degradation models are then combined and used to monitor the microgripper, assess its health state and estimate its Remaining Useful Life (RUL).
منابع مشابه
OPTIMUM GENERALIZED COMPOUND LINEAR PLAN FOR MULTIPLE-STEP STEP-STRESS ACCELERATED LIFE TESTS
In this paper, we consider an i.e., multiple step-stress accelerated life testing (ALT) experiment with unequal duration of time . It is assumed that the time to failure of a product follows Rayleigh distribution with a log-linear relationship between stress and lifetime and also we assume a generalized Khamis-Higgins model for the effect of changing stress levels. Taking into account that the...
متن کاملDesign and Analysis of Step Stress Accelerated Life Tests for Censored Data}
Life testing often is consuming a very long time for testing. Therefore, the engineers and statisticians are looking for some approaches to reduce the running time. There is a recommended method for reducing the time of failure, such that the stress level of the test units will increase, and then they will fail earlier than normal operating conditions. These approaches are called accelerated li...
متن کاملFailure Process Modeling with Censored Data in Accelerated Life Tests
Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...
متن کاملUnderstanding and Improving Longevity in RF MEMS Capacitive Switches
This paper discusses issues relating to the reliability and methods for employing high-cycle life testing in capacitive RF MEMS switches. In order to investigate dielectric charging, transient current spectroscopy is used to characterize and model the ingress and egress of charges within the switch insulating layer providing an efficient, powerful tool to investigate various insulating material...
متن کاملCondition assessment and fault prognostics of microelectromechanical systems
Microelectromechanical systems (MEMS) are used in different applications such as automotive, biomedical, aerospace and communication technologies. They create new functionalities and contribute to miniaturize the systems and reduce their costs. However, the reliability of MEMS is one of their major concerns. They suffer from different failure mechanisms which impact their performance, reduce th...
متن کامل